
Lecture 10

Numerical Solution of the Diffusion Equation

The purpose of this lecture is to discuss the methods required to write a 1-D slab diffusion

code. The equation to be solved is:

− d

dx
D

dφ

dx
+ σa φ = q . (1)

The spatial grid on which we solve Eq. (1) has edge coordinates {xi−1/2}N
i=0, where

x1/2 = 0 , xi+1/2 = xi−1/2 + hi , i = 1, N, (2)

and center coordinates, {xi}N
i=1, where

xi =
1

2
(xi−1/2 + xi+1/2) . (3)

A grid is illustrated in Fig. 1. There is a unique absorption and scattering cross section

associated with each cell, {σa,i}N
i=1 and {σt,i}N

i=1, respectively. These may vary between

cells, but are constant within each cell. Finally, there is an isotropic inhomogeneous source

associated with each cell, {Qi}N
i=1. These may vary between cells, but are constant within

x1/2 x3/2 x5/2 xN−3/2 xN+1/2xN−1/2

Figure 1: Grid indexing.
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Figure 2: A single cell.

each cell. The scalar fluxes are located at both cell center and cell edge, but the cell edge

fluxes will eventually be eliminated. The currents are located at cell faces.

To derive our difference equations, we first consider a single cell, which is illustated in

Fig. 2. We first rewrite Eq. (1) in first-order form:

∂J

∂x
+ σaφ = Q , (4a)

J = − 1

3σt

∂φ

∂x
. (4b)

Equation (4a) is rigorously integrated over the cell:

Ji+1/2 − Ji−1/2 + σa,ihiφi = qihi . (5)

Care must be taken in differencing Eq. (4b). We first consider cell interfaces on the mesh

interior. It seems natural to take a difference between the scalar fluxes in cells xi and

xi+1 to compute a current at xi+1/2. This is perfectly reasonable if cells i and i + 1 have

the same diffusion coefficient. However, we allow the diffusion coefficient to differ between

cells. In this case, the derivative of the flux is discontinuous at the cell interface, so one

cannot take a difference across that interface. This is the reason for the cell edge scalar

fluxes. Instead, we use the cell-edge scalar flux and the adjacent cell center scalar fluxes to
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compute separate fluxes on each side of the interface, i.e.,

Ji+ 1
2
,i = −2Di

hi

(
φi+ 1

2
− φi

)
, (6a)

Ji+ 1
2
,i+1 = −2Di+1

hi+1

(
φi+1 − φi+ 1

2

)
, (6b)

where Ji+ 1
2
,k denotes the current associated with interface i + 1

2
and cell k. The interface

conditions for the 1-D diffusion equation state that the scalar flux and current must be

continuous. The former condition is automatically met by having one scalar flux at each

interface, but we must enforce the latter condition since there are two currents at each

interface. The continuity-of-current condition provides the equation for the cell-edge fluxes,

i.e., the equation for φi+ 1
2
is

−2Di

hi

(
φi+ 1

2
− φi

)
= −2Di+1

hi+1

(
φi+1 − φi+ 1

2

)
. (7)

Solving for the cell-edge scalar flux in Eq. (7), we get

φi+1/2 =
σi+1hi+1φi + σihiφi+1

σi+1hi+1 + σihi

. (8)

Note that φi+ 1
2
is a weighted-average of φi and φi+1 that favors the flux in the most optically-

thin cell, i.e., the cell whose thickness is smallest in total mean-free-paths. Substituting

from Eq. (8) into either Eq. (6a) or Eq. (6b), we get

Ji+1/2 = −Di+1/2

hi+1/2

(φi+1 − φi) , (9)
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where

Di+1/2 =

[
hi

Di
+ hi+1

Di+1

hi + hi+1

]−1

, (10a)

=
hi + hi+1

3(σt,ihi + σt,i+1hi+1)
,

and

hi+1/2 =
hi + hi+1

2
. (10b)

Note that Eq. (9) indicates that a difference can be taken across a material discontinutity if

the diffusion coefficient is properly averaged. It can be seen from Eq. (10a) that the correct

average is a weighted harmonic average. If this average is not used, the solution will not

converge as the mesh is refined. A discontinuity in diffusion coefficient is not to be confused

with a continuous variation in the diffusion coefficient. In the latter case one may average

coefficients as desired and still retain convergence as the mesh is refined. Substituting from

Eq. (9) into Eq. (5), we obtain the standard 3-point cell-centered diffusion operator:

−Di+1/2

hi+1/2

(φi+1 − φi) +
Di−1/2

hi−1/2

(φi − φi−1) + σa,ihiφi = qihi . (10c)

Equation (10c) applies for all interior cells. We next consider the boundary currents. To

obtain initial equations for J 1
2
and JN+ 1

2
, we first apply the Marshak conditions. In par-

ticular, assuming an incident flux at the left boundary, fL(µ), and using the extrapolation

form of the Marshak boundary condition, we get

φ 1
2
+ 2J 1

2
= φb

L , (11)
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where φb
L is the effective scalar flux on the left boundary arising from the incident flux, i.e.,

φb
L = 4j+ = 8π

∫ 1

0

µfL(µ) dµ . (12)

Proceeding similarly for the right face, we get

φN+ 1
2
− 2JN+ 1

2
= φb

R , (13)

where φb
R is the effective scalar flux on the right boundary arising from the incident flux,

fR(µ), i.e.,

φb
R = 4j− = −8π

∫ 0

−1

µfR(µ) dµ . (14)

Solving Eqs. (11) and (13) for J 1
2
and JN+ 1

2
, respectively, we get

J 1
2
=

1

2

(
φb

L − φ 1
2

)
, (15)

and

JN+ 1
2
=

1

2

(
φN+ 1

2
− φb

R

)
. (16)

To get equations for φ 1
2
and φN+ 1

2
, we again impose a form of current continuity by requir-

ing that the expressions for the boundary currents from the Marshak condition equal the

expressions for the boundary currents from Fick’s law:

1

2

(
φb

L − φ 1
2

)
= −2D1

h1

(
φ1 − φ 1

2

)
, (17)

1

2

(
φN+ 1

2
− φb

R

)
= −2DN

hN

(
φN+ 1

2
− φN

)
, (18)
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Solving for φ 1
2
and φN+ 1

2
, respectively, we get

φ1/2 =

(
φb

L + 4D1

h1
φ1

)
(
1 + 4D1

h1

) , (19)

and

φN+1/2 =

(
φb

R + 4DN

hN
φN

)
(
1 + 4DN

hN

) . (20)

Note from Eqs. (19) and (20) that the scalar flux on the boundary is a weighted average

of the effective incident scalar flux and the center flux in the boundary cell. Substituting

from Eqs. (19) and (20) into Eqs. (15) and (16), respectively, we get the final expressions

for the boundary currents:

J1/2 =
−2D1

h1 + 4D1

(
φ1 − φb

L

)
, (21)

and

JN+1/2 =
2DN

hN + 4DN

(
φN − φb

R

)
. (22)

Using Eqs. (21), (9), and (5), we obtain the equation for the first cell:

−D3/2

h3/2

(φ2 − φ1) +

(
2D1

h1 + 4D1

)
φ1 + σa,1h1φ1 = q1h1 +

(
2D1

h1 + 4D1

)
φb

L . (23)

Using Eqs. (22), (9), and (5), we obtain the equation for the last cell:

(
2DN

hN + 4DN

)
φN +

DN−1/2

hN−1/2

(φN − φN−1) + σa,NhNφN = qNhN +

(
2DN

hN + 4DN

)
φb

R . (24)

This completes the derivation of the difference equations. Note that the diffusion matrix

is tridiagonal and symmetric positive definite.
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